Il codice richiede di inserire soltanto il numero dei valori in cui si desidera dividere l'intervallo e la funzione. Maggiori saranno gli intervalli del dominio e più preciso sarà il calcolo dell' integrale definito.E' comunque dimostrato che il metodo Montecarlo ha una convergenza molto lenta e richiede, in generale, un numero elevato di intervalli per ottenere una stima precisa. %calcolo di integrali di funzioni in X=[0,1] function[]=metodo_montecarlo() disp('inserire numero di elementi del dominio') t=input('t='); X=linspace(0,1,t); disp('definire la funzione f(X),(x maiuscola)') f=input('f(X)='); y=f'; s=length(X); E=sum(y(:))/s; disp('integrale definito della funzione in X=[0,1],E='); disp(E);
Programma per il calcolo delle sovrappressioni del colpo d'ariete. Questo codice prevede l'inserimento manuale dei dati all avvio del programma. Per creare il vettore dei tempi,come indicato nel programma, è consigliabile usare la funzione "linspace(inizio, fine, lunghezza del vettore)". %h0=carico piezometrico iniziale %n0=valore della funzione di variazione sezione all otturatore al tempo 0 %a=celerità %t_off=tempo della manovra di chiusura %vettore_t=vettore contenenti i tempi a intervallo costante function[]=allievi() disp('definire il carico piezometrico iniziale h0(metri)') h0=input('h0='); disp('definire la funzione apertura otturatore n0(inizio manovra)') n0=input('n0='); disp('definire la celerità di propagazione') a=input('a='); disp('definire tempo della manovra di chiusura(secondi)') t_off=input('t_off='); disp('vettore dei tempi [funzione "linspace(inizio,fine,num