Dato un vettore v=(vx,vy,vz) e una funzione scalare a(x,y,z),si vuole dimostrare la seguente relazione:
Enunciato: Data una funzione continua in un intervallo chiuso [a,b] e derivabile nello stesso intervallo aperto (a,b) se f(a)=f(b) esiste un valore c∈ (a,b) tale che f '(c)=0 . Il teorema ci garantisce dunque l'esistenza di almeno un punto stazionario all'interno dell' intervallo, se il valore di f(a) coincide con f(b) . Dimostrazione: Vanno analizzati due casi Se f è monotona ogni suo punto può essere considerato stazionario e di conseguenza, essendo la funzione costante in ogni suo punto f(a)=f(b)=f(c) , f'(c)=0 ∀ c∈ [a,b] Se f si sposta crescendo e decrescendo si sfrutta il teorema di Weierstrass per dimostrare l'esistenza di un massimo o di un minimo assoluti e poi grazie al Teorema di Fermat si può affermare che in tale punto la derivata faccia zero.
Commenti
Posta un commento